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Abstract
Recently, structured sparsity-inducing based fea-
ture selection has become a hot topic in machine
learning and pattern recognition. Most of the
sparsity-inducing feature selection methods are de-
signed to rank all features by certain criterion and
then select the k top-ranked features, where k is an
integer. However, the k top features are usually not
the top k features and therefore maybe a subopti-
mal result. In this paper, we propose a novel su-
pervised feature selection method to directly iden-
tify the top k features. The new method is formu-
lated as a classic regularized least squares regres-
sion model with two groups of variables. The prob-
lem with respect to one group of the variables turn
out to be a 0-1 integer programming, which had
been considered very hard to solve. To address this,
we utilize an efficient optimization method to solve
the integer programming, which first replaces the
discrete 0-1 constraints with two continuous con-
straints and then utilizes the alternating direction
method of multipliers to optimize the equivalen-
t problem. The obtained result is the top subset with
k features under the proposed criterion rather than
the subset of k top features. Experiments have been
conducted on benchmark data sets to show the ef-
fectiveness of proposed method.

1 Introduction
In modern machine learning and pattern recognition applica-
tions, data are commonly represented by high dimensional
feature vectors, such as image classification [Chatfield et al.,
2011; Chang et al., 2016] and video recognition [Lan et al.,
2015; Chang et al., 2017]. High dimensional data are not
suitable for directly learning because the time cost and stor-
age requirement will be very high. Furthermore, they usually
contain many noise and redundant features [Peng et al., 2005]
that could degrade the generalization capability of the learn-
ing algorithms. Feature Selection (FS) [Guyon and Elisseeff,
2003] is designed to identify the most relevant and important
features that can give a compact and accurate data represen-
∗Corresponding author.

tation for learning. Compared with other feature analysis
methods, such as feature extraction [Belhumeur et al., 1997],
FS has better interpretability because it keeps the semantic
meaning of the features. Also, the cost of feature collection
can be reduced because that one only needs to collect the se-
lected features in FS rather than all the features as in feature
extraction does. As a result, FS has become a hot topic in ma-
chine learning and pattern recognition [Chang et al., 2014].

Based on the rule of the learning algorithm, there are
roughly three types of FS methods in literature: the filter-
type, the wrapper-type, and the embedded-type methods. The
filter-type method evaluates all data features based on certain
criteria, where no learning algorithm is involved. Represen-
tative filter-type feature selection methods include the reliefF
[Kira and Rendell, 1992], mRMR [Peng et al., 2005], Fisher
score [Duda et al., 2000], and Laplace score [He et al., 2006]
methods. The wrapper-type method applies a classifier as a
black box to score the features. The widely used wrapper-
type methods include the Support Vector Machine Recursive
Feature Elimination (SVM-RFE) [Guyon et al., 2002] and the
Correlation-based Feature Selection (CFS) [Hall and Smith,
1999]. The embedded-type method [Wang et al., 2007;
Argyriou et al., 2007] embeds the feature selection procedure
in a classifier algorithm and only a single optimization prob-
lem is involved. Because the embedded and wrapper methods
interact with a learning algorithm, they tend to achieve better
classification results than the filter-type method when some
specific learner is involved for evaluation.

Recently, empirical studies of sparse representation and
compressed sensing [Elad, 2010] indicate that sparsity is one
of the basic and intrinsic properties of real world data. F-
S, which finds a sparse attributes to represent the input data,
can be regarded as a natural application of the sparse repre-
sentation theory. A large number of FS methods resort to
the sparsity-inducing regularization terms/constraints, such
as the `0, `1-norm, `0,2-norm and `1,2-norm based penalty
terms/constraints, to achieve feature evaluation and selection
(The appearance of the notations may differ with those
used in previous papers, but they are essentially equiva-
lent). From the sparsity perspective, `0-norm and `0,2-norm
are more desirable to select the features because that they can
induce the sparsest solution, i.e., each feature should be as-
sociated with either the zero score or a large score. Howev-
er, `0-norm and `0,2-norm regularized/constrained optimiza-
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tion problems have been proved to be NP-hard [Amaldi and
Kann, 1998] and are very difficult to solve. Fortunately, the-
oretical results show that, under mild conditions, `1 and `0
are essentially equivalent [Donoho, 2004], i.e., `1-norm and
`1,2-norm can be regarded as efficient approximations to `0-
norm and `0,2-norm respectively. The `1-norm based prob-
lem, also known as Lasso [Tibshirani, 1994], is common-
ly used in FS on binary class data sets. Destrero et al. u-
tilize the Lagrangian form of Lasso for feature selection in
face recognition [Destrero et al., 2009]. In [Zou and Hastie,
2005], the elastic net regularization is proposed to handle
features with strong correlations. To remove the feature re-
dundancy, group Lasso is introduced to integrate the fea-
ture structure and then evaluate the importance of features,
where the structures include the disjoint groups [Zhang et al.,
2012], the overlapping groups [Jenatton et al., 2011], and
so on. To address multi-class problems, Nie et al. [Nie et
al., 2010] propose to apply `1,2-norm instead of `1-norm as
the penalty and have shown promising results. Many recent
FS methods are proposed in the form of `1,2-norm regular-
ized/constrainted optimization problems [Xiang et al., 2012;
Du and Shen, 2015; Han et al., 2015]. The matrix norm
has been extended to `p,2, (p ∈ (0, 1]) [Wang et al., 2014;
Tao et al., 2016] and `p,r, (1 < r) norms for robust FS. Be-
cause p = 0 is more desirable than any p > 0, an exact top-k
FS via a optimization problem with the `0,2-norm constraint
is proposed in [Cai et al., 2013].

In this paper, we propose a novel efficient and robust su-
pervised FS method, which has the following properties.

1. The proposed method is formulated as a problem with t-
wo group of variables and an `0,2(or `0)-norm constraint.
The sub-problem with respect to one group of the vari-
ables in the model is a 0-1 integer programming and the
sub-problem of the other group of the variables admits a
closed-form solution.

2. The 0-1 integer programming of our method is first-
ly transformed into an equivalent optimization problem
with two additional continuous constraints. The equiva-
lent problem is shown able to be efficiently solved by the
Alternating Direction Method of Multipliers (ADMM).
The Matlab code is published online1.

3. We provide an efficient algorithm to solve `0,2(or `0)-
constrained supervised FS method. The proposed
method guarantees to select the top k features instead
of k top features under the proposed criterion. Experi-
ments show that the proposed method has superior per-
formance than the compared state-of-the-art supervised
FS methods.

The rest of this paper is structured as follows: in Section 2,
we review some related sparsity-inducing FS methods. The
proposed supervised FS method is described in Section 3. Ex-
perimental comparisons with state-of-the-art supervised FS
methods on benchmark data sets are presented in Section 4.
Finally, the conclusion is drawn in Section 5.

1https://github.com/cxj273/IJCAI2017_1274

2 Sparsity-Inducing Supervised Feature
Selection Background

2.1 Notations and Definitions
The `p-norm of a vector v ∈ RD is defined as ‖v‖p =(∑D

i=1 |vi|p
) 1

p

, where vi denotes the i-th entry in v. The

`0-norm of a vector v is defined as ‖v‖0 =
∑D
i=1 |vi|0, i.e.,

the counts of nonzero entries in v. diag(v) (v ∈ RD) is a
diagonal matrix whose diagonal elements are the entries of
vector v and diag(Θ) (Θ ∈ RD×D) is a D-dimensional vec-
tor consists of the diagonal elements of the matrix Θ. The
`p,r-norm of a matrix A ∈ RC×D is defined as

‖A‖p,r = ‖ (‖A1‖r, · · · , ‖AD‖r) ‖p

=

 D∑
j=1

(
C∑
i=1

|aij |r
) p

r


1
p

where Aj (j = 1, · · · , D) denotes the j-th column of A.
Consequently, the ‖A‖0,2 is naturally defined as ‖A‖0,2 =∑D
j=1 ‖Ai‖02, which counts the number of nonzero columns

in A.
Let X = [x1, · · · , xN ] ∈ RD×N be the input data matrix,

where D is the input dimensionality, N is the number of data
points, the i-th column, xi, denotes a data vector. For pre-
sentation clarity and simplicity, we assume that the constant
value 1 has been added to the bottom of each data vector as
an additional dimension and thus the bias term can be omitted
throughout this paper.

2.2 Sparsity-Inducing Supervised Feature
Selection

Given a binary class data set, many sparsity-inducing FS
methods can be interpreted as the approximation or relaxed
version of the following problem

A∗ = arg min
A
‖y −AX‖22, s.t. ‖A‖0 = k, (1)

where A ∈ RD, y ∈ RN and its i-th entry yi ∈ {0, 1} is the
class label of xi. The `0-norm constraint means only k entries
are non-zeros and thus only k features of X are used. The
purpose of FS is to find out which k features are effective. We
can also write the problem (1) in the equivalent Lagrangian
form:

A∗ = arg min
A

{
‖y −AX‖22 + γ‖A‖0

}
, (2)

where nonnegative γ is a given tradeoff parameter. Howev-
er, the problems (1) and (2) have been proven to be NP-hard
problems and are computationally infeasible. Many FS meth-
ods [Destrero et al., 2009; Cai et al., 2010] replace `0-norm
with its convex surrogate `1-norm and have shown promising
results. Generally, the values of entries in A indicate the im-
portance of data features. The features with high values in A
are then selected.

For multi-class data set, the ideal top-k FS [Cai et al., 2013]
is to optimize

A∗ = arg min
A
‖Y −AX‖1,2, s.t. ‖A‖0,2 = k, (3)
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or its equivalent form

A∗ = arg min
A
{‖Y −AX‖1,2 + γ‖A‖0,2} . (4)

where A ∈ RC×D be the projection matrix, Y ∈ RC×N be
the label matrix with the i-th column yi ∈ RC . If xi is in
the k-th class, the k-th entry of yi is 1 and the rest entries are
0s. However, `0,2-norm regularized/constrained optimization
problem is still NP hard and is computationally infeasible. To
address this problem, matrix `p,r-norm has been proposed for
inducing column sparsity to achieve feature selection, where
p ∈ (0, 1] and r > 1. The objective function of `1,2 based
Robust Feature Selection (RFS) [Nie et al., 2010] is proposed
as

A∗ = arg min
A
{‖Y −AX‖1,2 + γ‖A‖1,2} ,

To enforce further sparsity, [Wang et al., 2014] proposes the
`p,2-norm based FS method.

A∗ = arg min
A

{
‖Y −AX‖pp,2 + γ‖A‖pp,2

}
, (5)

where p ∈ (0, 1] is a given parameter.

3 Top-k Supervised Feature Selection
3.1 Formulation
Both `p,2-norm and `p-norm are surrogates of their original
sparsity-inducing constraints, `0,2-norm and `0-norm respec-
tively. Therefore, it is more desirable to optimize the original
sparsest problem instead of its relaxed formulation. In this
paper, we propose a novel method that directly solves the s-
parsest feature selection model. The proposed method does
not score every features, but selects the optimal feature set
with k features under the proposed criteria. For convenience,
the classical multi-class least squares regression model is uti-
lized to learn the linear projection matrix A as

A∗ = arg min
A
‖Y −AX‖2F + γ‖A‖2F , (6)

s.t. ‖A‖0,2 = k.

As can be seen, the proposed model is a classical regularized
least squares regression with an additional `0,2-norm based
constraint. The `0,2-norm constraint requires k and only k
columns of the matrix A are not zero vectors. Therefore, the
k corresponding features of X are active and the rest features
hibernate in the regression (6). Instead of directly solving the
`0,2 constrained problem, we first transform it to an equiva-
lent `0-norm constrained problem as follows:

{A∗, v∗} = arg min
A
‖Y −Adiag(v)X‖2F + γ‖A‖2F , (7)

s.t. ‖v‖0 = k, and v ∈ {0, 1}D.

Once let Â = Adiag(v) = [v1A1, · · · , vDAD], we can see
that the FS problems (6) and (7) are essentially equivalent.
With respect to the variableA, the problem (7) has the closed-
form least squares solution. However, the problem with re-
spect to the variable v is a 0-1 integer programming and is
generally very difficult to solve. Here we utilize the `2-box
method to efficiently address this problem [Wu and Ghanem,
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Figure 1: An illustrative example of the equivalence between
the binary constraint and the continuous constraints in 2-D
space

2016]. The binary constraint {0, 1}D can be replaced with an
equivalent set of continuous constraints, i.e., the intersection
of a box and a shifted `2-sphere. The result is presented in
Proposition 3.1.

Proposition 3.1 [Wu and Ghanem, 2016] Let 1D ∈ RD be
the vector whose entries are all 1s, we have

v ∈ {0, 1}D ⇔
{
v : v ∈ [0, 1]D

}⋂{
v : ‖v − 1D

2
‖22 =

D

4

}
.

An illustrative example of the equivalence between the bina-
ry constraint and the continuous constraints in 2-D space is
given in Figure 3.1. Based on Proposition 3.1, we can obtain
the following problem which is equivalent to (7).

{A∗, v∗} = arg min
A
‖Y −Adiag(v)X‖2F + γ‖A‖2F , (8)

s.t. 1D
T v = k, v = v1, v = v2,

v1 ∈ Sb and v2 ∈ Sp

where the two sets Sb =
{
v : v ∈ [0, 1]D

}
and Sp ={

v : ‖v − 1D

2 ‖
2
2 = D

4

}
. In (8), the two continuous con-

straints in Proposition 3.1 are separated by two additional
variables v1 and v2. The problem (8) can now be efficient-
ly optimized by the ADMM method.

3.2 Optimization
ADMM method has been widely used in convex optimiza-
tion, and there is also growing interests and applications on
the advantage of ADMM in non-convex optimization. In this
section, we study an efficient solution for our FS method (8)
using the ADMM method, which solves the following sub-
problems iteratively:

1. Fix the other variables, optimize A through solving a
classic least squares regression problem.

2. Given A, compute v through solving an unconstrain-
t quadratic optimization problem.
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3. Project v on to Sb and Sp to obtain v1 and v2 respective-
ly.

4. Update the Lagrange multipliers.
Using a parameter ρ > 0, the augmented Lagrangian func-

tion of (8) is obtained as
L(A, v, v1, v2, y1, y2, y3) = ‖Adiag(v)X − Y ‖2F

+γ‖A‖2F + yT1 (v − v1) + yT2 (v − v2) + y3(1D
T v − k)

+
ρ

2

[
‖v − v1‖22 + ‖v − v2‖22 + (1D

T v − k)2
]
, (9)

where y1 ∈ RD, y2 ∈ RD and y3 ∈ R are Lagrange multipli-
ers for the three equality constraints. The ADMM approach
then iteratively optimize the variables individually. Denote by
(A(t), v(t), v

(t)
1 , v

(t)
2 ) the optimization variables at iteration t,

and by (y
(t)
1 , y

(t)
2 , y

(t)
3 ) the Lagrange multipliers at iteration t.

Step 1: Solving the linear projection matrix A when
other variables are fixed. The (9) with respect toA is a clas-
sical least squares regression problem and the solution can be
directly provided as (at the t+ 1-th iteration)

A(t+1) = Y XT diag(v(t))
(

diag(v(t)))XXT diag(v(t)))

+γI)
−1 (10)

Step 2: Optimize v when other variables are fixed. After
some mathematical deductions, we can obtain the following
unconstraint quadratic optimization problem with respect to
the variable v as

min
v
vT
(

Φ� (Ψ(t+1))T
)
v − 2vT diag(Θ(t+1))

+
ρ

2

(
‖v − v(t)1 +

y
(t)
1

ρ
‖22 + ‖v − v(t)2 +

y
(t)
2

ρ
‖22

+(1D
T v − k +

y
(t)
3

ρ
)2

)
where Φ = XXT , Ψ(t+1) = (A(t+1))TA(t+1), Θ(t+1) =
XY TA(t+1). Imposing the derivative of the objective func-
tion with respect to v to zero, we obtain the closed-form so-
lution as

v(t+1) =
(

2Φ� (Ψ(t+1))T + ρ(1D1D
T + 2I)

)−1
·(

2diag(Θ(t+1)) + ρ

[
(v

(t)
1 −

y
(t)
1

ρ
) + (v

(t)
2 −

y
(t)
2

ρ
)

+(k − y
(t)
3

ρ
)1D

])
(11)

Step 3: Update variables v1 and v2 through projections
onto Sb and Sp. The variables are updated as follows{

v
(t+1)
1 = PSb

(v(t) + y1
ρ )

v
(t+1)
2 = PSp

(v(t) + y2
ρ )

(12)

For any x, the projection on a box PSb
is a element-wise func-

tion, which is given by

PSb
(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 otherwise.

For any vector x ∈ RD, one first compute the two candidates
of the projection on Sp as

x1 =
1D

2
+

( √
D

2‖x− 1D

2 ‖

)(
x− 1D

2

)
and

x2 =
1D

2
−

( √
D

2‖x− 1D

2 ‖

)(
x− 1D

2

)
.

Then, the projection of x on PSp
can be computed as

PSp
(x) =

{
x1 if ‖x− x1‖ < ‖x− x2‖
x2 otherwise .

Step 4: Update variables y1, y2, y3 and ρ. Having
variables (A(t+1), v(t+1), v

(t+1)
1 , v

(t+1)
2 ) fixed, the Lagrange

multipliers and step size ρ are updated as follows
y
(t+1)
1 = y

(t+1)
1 + ρ(v(t+1) − v(t+1)

1 )

y
(t+1)
2 = y

(t+1)
2 + ρ(v(t+1) − v(t+1)

2 )

y
(t+1)
3 = y

(t+1)
3 + ρ(1D

T v(t+1) − k)

ρ = µρ,

(13)

where µ > 1 is a given parameter.
These steps are repeated until convergence is achieved

or the number of iterations exceeds a maximum iteration
number. Convergence is achieved when we have ‖v(t+1) −
v
(t+1)
1 ‖∞ ≤ ε, ‖v(t+1) − v(t+1)

2 ‖∞ ≤ ε, and |1D
T v(t+1) −

k| ≤ ε. The updates for the details of ADMM implementa-
tion are summarized in Algorithm 1.

Algorithm 1 ADMM for solving problem (7)
Input: Data matrix X , label matrix Y , γ;

A is initialized as the identity matrix I , v = 1D, v1 =
v2 = 0D, ρ = 1, and µ = 1.05

Output: Projection matrix A and vector v
1: while not converged do
2: Update A(t+1) as in (10);
3: Update v(t+1) as in (11);
4: Update v(t+1)

1 and v(t+1)
2 through projections onto Sb

and Sp as in (12);
5: Update y(t+1)

1 , y(t+1)
2 , y(t+1)

3 and ρ as Eq. (13).
6: If not converged, set t← t+ 1.
7: end while

3.3 Computational Complexity Analysis
To optimize the objective function of the proposed method,
the step 1 and step 2 are time consuming operations. At step
1, the algorithm needs to inverse an D × D matrix and the
time complexity is O(D3). At step 2, an matrix inversion
is computed on a D × D matrix whose time complexity is
O(D3). Assuming there are T iterations before the algorithm
stops, the total cost of the proposed method is O(T (D3)). As
can be seen, the computation complexity is comparably high-
er than most of the sparsity-inducing supervised FS methods.
We plan to reduce the computation complexity of the pro-
posed method in the future work.
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Figure 2: Convergence analysis on the Coil-20 data set. (a) presents the norms of the column vectors of matrix A, (b) provides
the entries of the final converged vector v, and (c) the convergence curve of the proposed FS method.

4 Experiments
In this section, the proposed method is compared with state-
of-the-art supervised feature selection methods on benchmark
image data sets. The experiments include the supervised clas-
sification by the Nearest Neighbor classifier (1-NN) and the
Support Vector Machine (SVM) under various experimental
settings. The numerical convergence analysis of the proposed
method is also included.

4.1 Datasets Description
Three real world data sets are used in our experiments. The
important statistics of these data sets are briefly summarized
as bellow:

• The Coil-20 data set2 contains 1440 image samples from
20 classes and each image is transformed into a 1024-
dimensional data point. There are 72 samples in each
class.

• The MNIST handwritten digital image data set3 has
6996 data points of digits ‘0’ - ‘9’. Each sample is a
784 dimensional feature vector.

• There are 2114 frontal-face images of 38 individuals in
the Yale-B face image data set4. Each image is stacked
to a 1024-dimensional data vector.

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

3http://www.escience.cn/people/fpnie/
4http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

4.2 Experimental Setup
The following state-of-the-art supervised feature selection
algorithms are compared in this paper. The Fisher score
method [Duda et al., 2000] evaluates each features indepen-
dently by computing the score using the Fisher criterion. The
Spectral method [Zhao and Liu, 2007] for supervised fea-
ture selection. The ReliefF method [Kira and Rendell, 1992]
for multi-class supervised feature selection. Robust Feature
Selection (RFS) [Nie et al., 2010] selects features by solv-
ing an `1,2-norm regularized regression problem. The `0,2-FS
method [Cai et al., 2013] which exactly selects the top k fea-
tures in the supervised scenarios. The Discriminative Least
Squares Regression (DLSR) [Xiang et al., 2012] which takes
the `1,2-norm regularized least squares regression formula-
tion. Also, the original data with all features for classification
is compared as the baseline.

The methods, Fisher, ReliefF and `0,2-FS, are param-
eter free. The Spectral method requires the neighbor-
hood size as a key parameter, which is tuned in the
range {4, 6, 8, 10}. The regularization parameter λA for
the RFS and DLSR methods is searched in the range
{0.001, 0.05, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. The best re-
sults are reported with these parameters. To make our results
reproducible, the regularization parameter γ = 0.2 is used for
our method throughout the experiments.

4.3 Convergence Analysis
To solve the proposed formulation, we develop an iterative
update algorithm. It is important to provide the experimental
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Figure 3: 1-NN and SVM classification results of the pro-
posed method with varying parameter γ ∈ [0, 3] on (a) Coil-
20, and (b) YaleB data sets.

study of the convergence of the proposed method. The con-
vergence rates on the Coil-20 data set are shown in Fig. 2. As
can be seen from Fig. 2(b), most of the entries of vector v are
either 0 or 1. Only a few entries lie in the range [0, 1]. This
means the proposed method is effective in solving 0− 1 inte-
ger programming. Fig. 2(a) presents that if a entry of v is 0,
the corresponding column of matrix A would be a zero vec-
tor. We can see from Fig. 2(c) that the proposed method con-
verges within 50 iterations, demonstrating that the proposed
optimization algorithm is effective. There is a low-lying pit
between the 3rd and the 10th iterations. This is because that
at the early stage of the algorithm, the impact of the continu-
ous constraints in our method is trivial, i.e., few of the entries
of v are 0 or 1 or even in the range of [0, 1]. The problem
is essentially equivalent to a classic least squares at the early
steps. After some iterations, the two continuous constraints
start exert significant influence on the objective function and
then the objective value can reasonably rise.

4.4 Performance Evaluation
Given a data set, we randomly select p percents from each
class to formulate the training data Xtrain and the remaining
data are used as the test data. The supervised feature selection
methods are performed on Xtrain to rank the features. The
classifiers, both 1-NN and SVM, are trained on Xtrain rep-
resented by the selected features and then tested on the test
data. For each setting, the experiments are repeated 10 times
and both the mean of results and the deviation variances are

reported.
Fig. 4 shows the plots of classification performance ver-

sus the number of selected features on the data sets, Coil-20,
MNIST and Yale-B. The percentage of labeled training data
is p = 30. As can be seen, our proposed method consis-
tently outperforms or show comparable performance with the
compared FS methods. The accuracy curves of the proposed
method converge very fast, with typically around 80 features.

The filter-type FS methods (Fisher, Spectral and ReliefF)
evaluate features individually and do not consider the rele-
vance among them. Therefore, the accuracies of these meth-
ods are generally lower than those obtained by group sparsity-
inducing based FS methods (RFS, `0,2-FS, DLSR and our
method). Our proposed method can efficiently remove noise
and redundant features and get comparably better perfor-
mance with fewer features. By comparing with the `0,2 FS
method, which also selects the exact number of the top fea-
tures, it is observed that our method is superior to `0,2 FS on
the data sets.

Due to the limited pages, the results on additional data sets
and the results when the percentage of training data p = 50
are not shown here. The readers are encouraged to try other
data sets with the provided Matlab code.

4.5 Parameter Sensitivity
The proposed method requires one parameter γ to be set in
advance. In this subsection, we discuss the sensitivity of the
proposed method over this parameter. The parameter γ is
searched in the range of [0, 3]. 50 percents of data in each
class are used as the training data (p=50) and the top 200 fea-
tures are utilized. The results on Coil-20 and YaleB data sets
are presented in Fig. 3. As can be seen, both large and small
γ degrades the performance of the proposed method. On the
other hand, any γ ∈ [0.2, 0.5] seems be able to give reason-
able results. We set γ = 0.2 and do not tune the parameter in
the experiments for different data sets under different experi-
mental settings.

5 Conclusion
In this paper, we propose a novel supervised FS method to
identify the best k features rather than the k top features.
The proposed method is a classic least squares under the `0
or `0,2 constraint, where the non-smoothed constraint means
the number of selected features. We transformed the original
integer programming problem into an optimization problem
with two continuous constraints. And then the problem is
efficiently solved by ADMM method. It is shown that the
proposed method outperforms the state-of-the-art supervised
FS method on benchmark image data sets.
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Figure 4: 1-NN and SVM classification results of the comparing feature selection methods with 30% percents training data the on (a)
Coil20(1-NN), (b) MNIST(1-NN), (c) YaleB(1-NN), (d) Coil20(SVM), (e) MNIST(SVM), and (f) YaleB(SVM) data sets. (1-NN and SVM
in the legend means the classification results on all features)
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